Small Language Models Improve Giants by Rewriting Their Outputs

Giorgos Vernikos, Arthur Brazinskas, Jakub Adamek, Jonathan Mallinson, Aliaksei Severyn, Eric Malmi

Google

Introduction: In-context Learning

Large Language Models have demonstrated impressive capabilities!

Introduction: In-context Learning

Downsides of in-context learning

1. Sensitivity to the description [Webson \& Pavlick, 2022], selection [Liu et al., 2022] and ordering [Lu et al., 2022] of in-context examples
2. Poor performance compared to fine-tuned models [Lester et al., 2021; Xu et al., 2023]

Methods	MNLI-m	MNLI-mm	SST-2	QNLI	MRPC	QQP	CoLA	RTE	Avg.
GPT-3.5 ICL	80.80	82.39	91.39	80.52	60.05	81.64	60.51	86.28	81.32
RoBERTa-Large	88.68	89.47	96.44	94.07	83.09	92.11	64.55	87.00	88.68

Table 2: Experimental results on GLUE (Wang et al., 2019) development set. The metric for CoLA is Matthews Correlation and all other tasks use accuracy.

Introduction: Parameter-Efficient Fine-tuning
How can we fine-tune LLMs?
Full fine-tuning

Introduction: Parameter-Efficient Fine-tuning

How can we fine-tune LLMs?

Full fine-tuning

Prompt tuning [Lester et al., 2021]
Mixed-task

Task Prompts
(20K params each)

Adapters [Houlsby et al., 2019]

LoRa [Hu et al., 2022]

Introduction: Parameter-Efficient Fine-tuning
How can we fine-tune LLMs?

Full fine-tunina

However these methods still require:
(7) computational resources to load and update the model
(4) access to the model's weights

C C^{2} C2
Task Prompts
(20K params each)

Introduction: Parameter-Efficient Fine-tuning
How can we fine-tune LLMs?

Fill fine-tunina

We propose LMCor:

- compact model that corrects the predictions of LLMs
(3) leverages only the outputs of the LLMs

Approach: Motivation

Grammatical Error Correction

Approach: LM-Corrector

1. We generate multiple outputs from the LLM (API) through few-shot prompting

P Generated outputs have complementary strengths and weaknesses

Approach: LM-Corrector

1. We generate multiple outputs from the LLM (API) through few-shot prompting

V Generated outputs have complementary strengths and weaknesses
2. We feed the input \& candidates to a smaller model, the LM-Corrector (LMCor) to synthesize a refined output.

Approach: LM-Corrector

- LMCor is trained on the task-specific dataset augmented with candidates generated by the LLM
- LMCor learns to rank, edit and combine the LLM-generated candidates
- LMCor can be much smaller than the LLM
- Our approach does not require access to the weights of the LLM

Experiments \& Results: Datasets and Models

- 4 natural language generation tasks:
(i) Grammatical error correction: CoNLL-14 (60k examples)
(ii) Data-to-text generation: E2E NLG (35k examples)
(iii) Summarization: XSum
(iv) Machine translation: En->De WMT22
- LLMs: PaLM-62B for (i)-(iii) and XGLM-2.9B for (iv)
- Candidates: Greedy decoded + 4 sampled outputs
- Models: T5-base (250M)

Experiments \& Results: Methods

T5-base (FT) Standard fine-tuning of T5-base on the task-specific dataset

Reranking using an oracle that selects the best candidate

LMCor (ours)

LMCor (single)
Fine-tuning a T5-base on the task-specific dataset augmented with a single or multiple candidates (mult.) sampled from the LLM
Prompting the LLM with few (5) shots

Sampling \& Reranking

Reranking with minimum Bayes risk decoding (MBRD) using longest common subsequence (LCS) as the utility function

LMCor (mult.)

Experiments \& Results: Grammatical Error Correction

CoNLL-14

Experiments \& Results: Grammatical Error Correction

Experiments \& Results: Data-to-text Generation

Experiments \& Results: Data-to-text Generation

E2E NLG

Experiments \& Results: Data-to-text Generation

Experiments \& Results: Data-to-text Generation

Experiments \& Results: Summarization

Experiments \& Results: Summarization

Experiments \& Results: Summarization

Experiments \& Results: Machine Translation

Experiments \& Results: Machine Translation

WMT22 En->De

Experiments \& Results: Machine Translation

WMT22 En->De

Experiments \& Results: Machine Translation

WMT22 En->De

Robustness: Pipeline

Robustness: Pipeline

Robustness: Different prompts
Robustness to prompt variability using three sets of demonstrations for GEC

Robustness: Different prompts
Robustness to prompt variability using three sets of demonstrations for GEC

LMCor mitigates the need for extensive prompt engineering!

Robustness: Different LLMs
Applying the LMCor to different LLMs without retraining
same family, different scale

T5-base	59.38		
PaLM (ICL)	$8 B$	$62 B$	$540 B$
	48.62	59.92	$\mathbf{6 5 . 3 7}$
+ LMCor (single)	61.40	$\mathbf{6 2 . 4 8}$	63.55
+ LMCor (mult.)	$\mathbf{6 1 . 8 9}$	$\mathbf{6 2 . 4 7}$	65.16
CONLL-14			

Robustness: Different LLMs
Applying the LMCor to different LLMs without retraining
same family, different scale

T5-base	59.38		
PaLM (ICL)	$8 B$	$62 B$	$540 B$
	48.62	59.92	$\mathbf{6 5 . 3 7}$
+ LMCoR (single)	61.40	$\mathbf{6 2 . 4 8}$	63.55
+ LMCoR (mult.)	$\mathbf{6 1 . 8 9}$	$\mathbf{6 2 . 4 7}$	65.16
CONLL-14			

different family, different scale

Model	R-2	R-L
GPT3-Codex (ICL) *	34.2	44.4
+ MBRD-BLEURT *	36.4	46.5
+ LMCor (mult.)	$\mathbf{4 4 . 8}$	$\mathbf{5 3 . 0}$

E2E NLG

Robustness: Different LLMs
Applying the LMCor to different LLMs without retraining
same family, different scale

T5-base	59.38		
PaLM (ICL)	$8 B$	$62 B$	$540 B$
	48.62	59.92	$\mathbf{6 5 . 3 7}$
+ LMCoR (single)	61.40	$\mathbf{6 2 . 4 8}$	63.55
+ LMCoR (mult.)	$\mathbf{6 1 . 8 9}$	$\mathbf{6 2 . 4 7}$	65.16
CONLL-14			

different family, different scale

Model	R-2	R-L
GPT3-Codex (ICL) *	34.2	44.4
+ MBRD-BLEURT* *	36.4	46.5
+ LMCor (mult.)	$\mathbf{4 4 . 8}$	$\mathbf{5 3 . 0}$

E2E NLG

LMCor seamlessly integrates with various LLMs!

Analysis: Scaling the corrector

Conclusion

LMCor:

- a compact model that improves the performance of LLMs on specific tasks by correcting their outputs, without access to their weights
- multiple candidates improve task performance and robustness
- a small LMCor can improve the outputs of an LLM $\underline{\text { x250 }}$ its size
- can be used as a plug-and-play module for different LLMs

Code: https://github.com/GeorgeVern/Imcor

Thank you!

\ @gvernikos
\#https://georgevern.github.io/

Additional Results: Data-to-text generation

E2E NLG

Model	R-2	R-L
T5-base	45.3	52.8
PaLM-62B* (FT)	45.2	-
PaLM-540B* (FT)	$\underline{45.3}$	52.3
PaLM-62B (ICL)	35.1	45.6
+ MBRD-Sim-LCS	35.7	46.2
+ Oracle Reranker	37.1	50.4
+ LMCor (single)	44.8	$\underline{52.8}$
+ LMCor (mult.)	$\mathbf{4 5 . 6}$	$\mathbf{5 3 . 4}$

Additional Results: Summarisation

XSum

Model	R-1	R-2	R-L
T5-base	$\mathbf{3 8 . 6 4}$	16.98	31.41
PaLM-62B* (FT)	-	18.5	-
PaLM-540B* (FT)	-	$\mathbf{2 1 . 2}$	$\mathbf{3 6 . 5}$
PaLM-62B (ICL)	28.18	10.50	22.38
PaLM-540B (ICL)	29.88	11.75	23.83
+ LMCoR (single)	36.98	16.41	30.20
+ LMCor (mult.)	$\underline{37.62}$	$\underline{16.50}$	$\underline{30.67}$

Additional Results: Machine Translation

WMT22 En->De

Model	BLEU	COMET	BLEURT
T5-base	23.32	75.22	64.57
XGLM-2.9B (ICL)	17.32	74.54	66.47
+ MBRD-Sim-CLS	18.01	74.82	66.73
+ Oracle Reranker	21.21	75.55	66.90
+ LMCor (single)	$\underline{\mathbf{2 4 . 5 1}}$	$\underline{76.81}$	$\underline{\mathbf{6 7 . 2 3}}$
+ LMCoR (mult.)	$\mathbf{2 5 . 1 5}$	$\mathbf{7 7 . 4 5}$	$\mathbf{6 8 . 4 1}$

Analysis: Correcting task-specific models

XSum

Model	R-1	R-2	R-L	BLEU
Pegasus (FT)	45.48	$\mathbf{2 3 . 8 8}$	38.18	16.72
+ LMCOR	$\mathbf{4 5 . 7 6}$	23.78	$\mathbf{3 8 . 2 8}$	$\mathbf{1 7 . 0 0}$

Analysis: Importance of the source

E2E NLG

Model	R-2	R-L
PaLM-62B (ICL)	35.1	45.6
+ LMCor	$\mathbf{4 5 . 6}$	$\mathbf{5 3 . 4}$
- source sentence	44.5	53.1

