Small Language Models Improve Giants by Rewriting Their Outputs

Giorgos Vernikos, Arthur Brazinskas, Jakub Adamek, Jonathan Mallinson, Aliaksei Severyn, Eric Malmi

Introduction: In-context Learning

Large Language Models have demonstrated impressive capabilities!

Introduction: In-context Learning

Downsides of in-context learning

- Sensitivity to the description [Webson & Pavlick, 2022], selection [Liu et al., 2022] and ordering [Lu et al., 2022] of in-context examples
- 2. Poor performance compared to fine-tuned models [Lester et al., 2021; Xu] <u>et al., 2023</u>]

Methods	MNLI-m	MNLI-mm	SST-2	QNLI	MRPC	QQP	CoLA	RTE	Avg.
GPT-3.5 ICL RoBERTa-Large	80.80 88.68	82.39 89.47		80.52 94.07			60.51 64.55		

Table 2: Experimental results on GLUE (Wang et al., 2019) development set. The metric for CoLA is Matthews Correlation and all other tasks use accuracy.

How can we fine-tune LLMs?

Full fine-tuning

How can we fine-tune LLMs?

Full fine-tuning

Prompt tuning [Lester et al., 2021]

Task Prompts (20K params each)

Adapters [Houlsby et al., 2019]

How can we fine-tune LLMs?

(20K params each)

Adapters [Houlsby et al 2019]

- Computational resources to load and update the model

How can we fine-tune LLMs?

Adanters [Houlsby et al 2019]

compact model that corrects the predictions of LLMs

Approach: Motivation

Grammatical Error Correction

- **Few-shot** prompting is competitive but underperforms state of the art (sota)
- Sampling and ranking multiple outputs shows moderate improvements
- **Combining** sampled outputs leads to significant performance gains

Approach: LM-Corrector

1. We generate multiple outputs from the LLM (API) through few-shot prompting

Generated outputs have complementary strengths and weaknesses

Approach: LM-Corrector

1. We generate multiple outputs from the LLM (API) through few-shot prompting

- Generated outputs have complementary strengths and weaknesses
- 2. We feed the input & candidates to a smaller model, the LM-Corrector (**LMCor**) to synthesize a refined output.

Approach: LM-Corrector

- LMCor is trained on the <u>task-specific</u> <u>dataset</u> augmented with candidates generated by the LLM
- LMCor learns to rank, edit and combine the LLM-generated candidates
- LMCor can be much smaller than the LLM
- Our approach does not require access to the weights of the LLM

Experiments & Results: Datasets and Models

- 4 natural language generation tasks:
 - (i) Grammatical error correction: CoNLL-14
 - (ii) Data-to-text generation: E2E NLG
 - (iii) Summarization: XSum
 - (iv) Machine translation: En->De WMT22

- LLMs: PaLM-62B for (i)-(iii) and XGLM-2.9B for (iv)
- Candidates: Greedy decoded + 4 sampled outputs
- Models: T5-base (250M)

S: CONLL-14 (60k examples) _G (35k examples) (204k examples) MT22 (200k examples)

M-2.9B for (iv) ampled outputs

of T5-base on the task-specific dataset

- vith few (5) shots
- **Sampling & Reranking**
 - num Baves risk decoding (MBRD)

- on subsequence (LCS) as the utility function
- Franking using an oracle that selects the best candidate
 - LMCor (ours)
- Fine-tuning a T5-base on the task-specific dataset augmented with a single or multiple candidates (mult.) sampled from the LLM

Experiments & Results: Grammatical Error Correctio

Experiments & Results: Grammatical Error Correction

Experiments & Results: Grammatical Error Correctio

Experiments & Results: Grammatical Error Correctio

Experiments & Results: Grammatical Error Correction

Experiments & Results: Summarization

Robustness: Pipeline

Robustness: Pipeline

Robustness: Different prompts

Robustness to prompt variability using *three sets of demonstrations* for GEC

_MCor

Robustness: Different prompts

Robustness to prompt variability using *three* sets of demonstrations for GEC

LMCor mitigates the need for extensive prompt engineering!

Robustness: Different LLMs

Applying the LMCor to different LLMs without retraining

same family, different scale

T5-base		59.38	
PaLM (ICL)	8B	62B	540B
rallin (ICL)	48.62	59.92	65.37
+ LMCOR (single)	61.40	62.48	63.55
+ LMCOR (mult.)	61.89	62.47	65.16

CoNLL-14

Robustness: Different LLMs

Applying the LMCor to different *LLMs* without retraining

same family, different scale

T5-base		59.38	
PaLM (ICL)	8B	62B	540B
rallin (ICL)	48.62	59.92	65.37
+ LMCOR (single)	61.40	62.48	63.55
+ LMCOR (mult.)	61.89	62.47	65.16

CoNLL-14

different family, different scale

Model	R-2	R-L
GPT3-Codex (ICL)*	34.2	44.4
+ MBRD-BLEURT*	36.4	46.5
+ LMCOR (mult.)	44.8	53.0

E2E NLG

Robustness: Different LLMs

Applying the LMCor to different LLMs without retraining

same family, different scale

T5-base		59.38	
PaLM (ICL)	8B	62B	540B
rallin (ICL)	48.62	59.92	65.37
+ LMCOR (single)	61.40	62.48	63.55
+ LMCOR (mult.)	61.89	62.47	65.16

CoNLL-14

LMCor seamlessly integrates with various LLMs!

different family, different scale

Model	R-2	R-L
GPT3-Codex (ICL)*	34.2	44.4
+ MBRD-BLEURT*	36.4	46.5
+ LMCOR (mult.)	44.8	53.0

E2E NLG

Analysis: Scaling the corrector

Conclusion

LMCor:

- a <u>compact</u> model that <u>improves</u> the performance of LLMs on specific tasks by correcting their outputs, <u>without access to their weights</u>
- <u>multiple candidates</u> improve task performance and robustness
- a small LMCor can improve the outputs of an LLM <u>x250</u> its size
- can be used as a plug-and-play module for <u>different LLMs</u>

Paper: https://arxiv.org/abs/2305.13514

Code: <u>https://github.com/GeorgeVern/Imcor</u>

Thank you!

Additional Results: Data-to-text generation

Model	R-2	R-L
T5-base	45.3	52.8
PaLM-62B* (FT)	45.2	_
PaLM-540B* (FT)	<u>45.3</u>	52.3
PaLM-62B (ICL)	35.1	45.6
+ MBRD-Sim-LCS	35.7	46.2
+ Oracle Reranker	37.1	50.4
+ LMCOR (single)	44.8	52.8
+ LMCOR (mult.)	45.6	53.4

E2E NLG

Additional Results: Summarisation

Model T5-base PaLM-62B* (FT) PaLM-540B* (FT) PaLM-62B (ICL) PaLM-540B (ICL) + LMCOR (single) + LMCOR (mult.)

XSum

	R-1	R-2	R-L
	38.64	16.98	31.41
	_	18.5	_
)	_	21.2	36.5
	28.18	10.50	22.38
)	29.88	11.75	23.83
)	36.98	16.41	30.20
	<u>37.62</u>	<u>16.50</u>	<u>30.67</u>

Additional Results: Machine Translation

Model	BLEU	COMET	BLEURT
T5-base	23.32	75.22	64.57
XGLM-2.9B (ICL)	17.32	74.54	66.47
+ MBRD-Sim-CLS	18.01	74.82	66.73
+ Oracle Reranker	21.21	75.55	66.90
+ LMCOR (single)	24.51	76.81	67.23
+ LMCOR (mult.)	25.15	77.45	68.41

WMT22 En->De

Analysis: Correcting task-specific models

Model	R-1	R-2	R-L	BLEU
Pegasus (FT)	45.48	23.88	38.18	16.72
+ LMCor	45.76	23.78	38.28	17.00

Analysis: Importance of the source

Model PaLM-62B (+ LMCor - source sent

E2E NLG				
	R-2	R-L		
(ICL)	35.1	45.6		
	45.6	53.4		
tence	44.5	53.1		