
Domain Adversarial Fine-Tuning as 
an Effective Regularizer

Giorgos Vernikos, Katerina Margatina, Alexandra Chronopoulou, 
Ion Androutsopoulos



Transfer Learning in NLP

scarcity of labeled data for NLP tasks

➜ implicit data augmentation 

overfitting to small datasets

➜ transfering from unsupervised task improves sample complexity and overall 

performance (Dai & Le, Yogotama et al.)
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Transfer Learning in NLP

Two-stage process: 

Pretraining
Training on unlabeled generic data in a variant of language 
modelling 

Fine-Tuning
Initialize with the pretrained Language Model (LM) &
Train on the labeled task-specific data

Challenges: Overfitting, Catastrophic Forgetting
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Transfer Learning in NLP

How to improve fine-tuning?

❏ Additional/Multitask training on labeled data or language modelling 

(Howard & Ruder, Liu et al., Phang et al., Gururangan et al.)

❏ Optimization stability (parameter freezing, lower learning rates, more iterations) 

(Howard & Ruder, Chronopoulou et al., Mosbach et al.)

❏ Penalize deviations from the parameters of the pretrained model 

(Kirkpatrick et al., Wiese et al., Lee et al.)

❏ Enforce constraints on the high-level representations of the model 

(Zhu et al., Cao et al., Jiang et al., Aghajanyan et al.)
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Proposed approach: 
 
domain Adversarial Fine-Tuning as an Effective Regularizer (AFTER)

Loss of general-domain representations as a form of catastrophic forgetting.

Adversarial loss that enforces invariance of text representations across different domains 

during fine-tuning.

The adversarial term acts as a regularizer that preserves most of the general-domain 

knowledge captured during pretraining.
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Proposed approach: AFTER

Regularize the extent to which the pretrained parameters are allowed to adapt to the 

target task domain.

Objective:

             

              is the task-specific loss,

                  refers to the auxiliary task of discriminating between in-domain and 

out-of-domain samples, 

     controls the importance of the second term
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Model Architecture

             Standard Fine-Tuning (SFT)
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Model Architecture

   AFTER
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Datasets & Tasks

4 datasets from the GLUE benchmark as Main
5 corpora as Auxiliary data from various domains
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Results: BERT

● AFTER improves performance over SFT on 4 datasets and can 
reduce variance

● gains are consistent across different Auxiliary data (except RTE)
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Results: XLNET

● AFTER improves performance for an even higher-performing LM
● AFTER with BERT outperforms XLNET SFT baseline on two tasks
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Ablation Study: Domain of the pretraining data 

Does the similarity between the domain of the LMs’ pretraining data and the 
task-specific domain matter? 

general-domain representations
created during pretraining

domain-specific representations
created during fine-tuning

≈

12



Ablation Study: Domain Distance

No clear pattern emerges,
demonstrating, perhaps, 
the robustness of our 
approach.

We measure the distance 
between Main and 
Auxiliary domains.
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Ablation Study: Domain-invariant vs. Domain-specific
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Conclusions

● We propose AFTER that adds an adversarial domain classification loss to the 

task-specific loss.

● Our approach does not  require additional labeled data and is applicable to any 

transfer learning scenario and model architecture.

● AFTER consistently outperforms standard fine-tuning.

● AFTER is more effective when the pretraining and target task data come from 

different domains and is generally robust to the choice of Auxiliary data.
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Thank you!

Paper: https://arxiv.org/abs/2009.13366v2

Code: https://github.com/GeorgeVern/AFTERV1.0

Twitter: @gvernikos
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